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sumLARY

On the basis of a solution to the linearized time-dependent wave
equation, the nondimensional lift derivative ~ snd the corresponding

pitching-moment derivative ~ resul.ttngfrom constant vertical accel-

eration (that is, linear variation of angle of attack with time) we
evaluated for a family of thin sweptback tapered wings with streamwise
tips traveling at supersonic speeds.

The smalysis is applicable at those speeds for which the wing leading
and trailing edges me both supersonic, provided that the Mach lines from
the wing apex intersect the trailing edge snd that the Mach line from the

& leading edge of one tip does not intersect the remote half-wing. Use is
made of a previous investigation in extending the range of applicability
to include cases for which the Mach lines from the wing apex intersect.
the tips.

Results of the analysis sre given in the form of design chsrts for
the stability derivatives C= and ~ from which fairly rapid estima-

tions of the derivatives can be made for given values of Mach number,
aspect ratio, leading-edge sweepback, smd taper ratio. For illustrative
purposes, some chordwlse pressure distributions, spamise pressure dis-
tributions, span load distributions, and variations of the stability
derivatives ~ and ~ with several parameters are also included.

Some results of the present investigation me combined with previous cal-
culations available for the stesdy-pitching derivative ~ to indicate

the variations of the total pitch~-moment derivative c% + c% ~t$h

% wing geometry and Mach number; these calculations sre applicable to slowly
(first-order frequency) oscil.latingw~s.

.
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INTRODUCTION

.

.

The development of the linearized supersonic-flow theory has allowed
the evaluation of most of the i~rtant dability derivatives for a vmiety
of isolated wing shapes. Recently, attention has be-enfocused on the thin
sweptback taperedwing with side edges psrallel to the axis of wing sym-
metry, that is, streamwise tips. Stability derivatives available for this
general plan form for a wide range of supersonic Mach numbers include the
lift-curve slope

(refs. 1, 2, and
to iolling Cyp

derivative Cm

C% (refs. 1 to 3), the damping-in-roll derivative %P

4), the lateral-force and yawing-moment derivativesdue
and Cnp (refs. ~ and 6), the static pitching-moment

(refs. 7 and 8), the lif~ and pitching-moment derivatives

due to stesdy pitch- ~ and ~ (refs. 7, 8, smd 9), and the

rolling-moment-due-to-si.deslipderivative c-lp (refs. 10 and 11). The

aforementioned derivatives, all of which result from “steady state)!
motions, are available for WQP with either subsonic or supersonic

leading edges.

Two derivatives resulting from an unsteady state or time-dependent
motion sre ~ and ~, the lift and pitching-moment derivatives,-

respectiveQ, due to a linear single-of-attackvariation with time (the
motion is more commonly termed constant vertical acceleration). Inasmuch
as the sums cLq+ c% and C%+ ~ ?wetict the total lift and

pitching-moment derivatives generated by a slowly (first-order frequency)
oscillating surface, calculation of the & derivatives corresponding to ~
those already available for steady pitching velocity q are in order.
A previous investigation (ref. 12) treats the subsonic-leading-edgecon-
dition; the present paper extends the rsnge of Mach nuniierto include

=e

the supersonic-leading-edgecondition.

Computational results are presented in the form of design charts
covering the practical range of wing-geometry parameters and Mach number
from which fairly rapid estimates of the derivatives may be obtained.
For illustrative purposes, several chordwise and spanwise pressure distri-
butions, span load distributions, and variations of the derivatives CL.}

%) ad the Sm %’~~th
several parameters me also presented:

.
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Cartesian coordinates; x-axis psrallel to free-stream direction
(see fig. 2)

free-stresm velocity

density of air

free-stream Mach number

cotangent of Mach anglej d
M2-~

Mach angle, cot-b

wing s-pan

root chord

2cr(# +x+ 1)
mean aerodynamic chord,

3(A + 1)

taper ratio, Tip chord/Root chord

2b
aspect ratio,

b2=—
Cr(l + h) s

wing area

ugle of sweep (see fig. 1)

m= cot ~

k=-=
AB(l + x)

cot Au AB(l + A) - 4MB(1 - A)

d distance between wing apex and center of gravity;
center of gravity is resrward of the wing apex

a angle of attack

% t time

.

positive when



4

Ci

q

m

(N)G1

(AP)q=l

‘P

@

#c@l

$q.1

r

L

M’

%

cm

rate of
tive

NACA TN 3196

change of angle of attack with time, da/dt; p06i=
& indicates downward acceleration

steady pitching velocity about y-axis; positive as shown in
figure 2

difference in pressure due to constant vertical acceleration
between upper and lower surfaces; positive upward

difference in pressure due to unit angle of
upper”and lower surfaces; posit”iveupward

difference in pressure due to unit pitching

attack between

velocity about the
y-axis between upper and lower s~facesj positive-upwsrd

pressure-difference coefficient due to constant vertical accel-

&’eration, —
1 ~2
:P

perturbation velocity potential due to constant vertical accel-
eration, evaluated on upper surface of wing

perturbation velocity potential due to unit angle of attack,
evaluated on upper surface of wing

perturbation velocity potential due to unit pitching velocity
about y-axis, evaluated on upper surface of wing —

8.
spanwise distribution of circulation due to constant vertical
acceleration

.

lift

pitching moment; positive as indicated in figure 2

Llift coefficient, -

;Pv%

pitching-moment coefficient, A

j-p%=
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Subscripts:

m trailing edge

LE leading edge

1,2 components used in

All angles sre measured

breakdown of results

in radism

ANALYSIS

Scope

The types of wings analyzed in the
* figure 1. These wings have vanishingly

and have srbitrsry taper ratio (O to 1)

.

unless otherwise indicated.

present paper me sketched in
small thickness, sre uncsmbered,
with tips parallel to the axis
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.

of’wing symmetry (streamWise tips). The leading edge is swept back,
although the trailing edge may be swept back or swept forward. Actually,

()
certain results CM of the present investigation are directly applicable

.

to wings with sweptforward leading edges in view of the reversibility
theorem (see, for exsmple, ref. 13).

The analysis is carried out within the framework of the linearized
theory and the results are thus sub~ect to the usual restrictions and
limitations imposed by such simplification. The mathematical derivations
are applicable for combinations of wing plan form smd Mach number that
satisfy the following conditions: (1) the Mach lines from the wing apex
intersect the trailing edge, (2) the trailing edge is supersonic, and
(3) the Mach line ‘originating at the leading edge of one wing tip does
not intersect the remote half-wing. Use is made of the sonic-leading-
edge results given in reference 12 and of the spsn load distributions
presented in reference 14 to enable the calculation of the derivatives
C% and $ for cases where the Mach lines from the wing apex inter-

sect the tips. Inasmuch as the third restriction is a minor one that is
applicable in the current investigation to wings of very low aspect ratio
only, the computational results presented he-reinapply, in general, at
speeds for which the wing leading snd trailing edges are both supersonic.

Orientation of the wing with respect to a system of body axes used
in the analysis is shown in figure 2(a); au derivations are carried out
with respect to this reference system unless otherwise noted. Design
curves for the derivatives are presented relative to a system of principal
body axes with the center-of-gravityposition assumed to be at the wing
apex as shown in figure 2(b). These results are also valid in a system
of stability sxes (fig. 2(c)) for small angles of attack (see, for example, 4
table I of ref. X2). A formula is included which permits transfer of the
given results to those applicable for an arbitrary center-of-gravity loca-
tion (fig. 2(d)). .

In addition to calculations for the derivatives ~ and CM,

tabulations of the velocity-potentialend pressure-distributionformulas
are included in the present paper. For illu~trativepurposes several
chordwise and spanwise pressure distributions, span load distributions~
and variations of the derivatives with wing-geometry parameters and Mach
number are presented. The results of the present paper sre also combined
with those available for steady pitching motion to indicate the varia-
tion of the SW-II C%+ ~ with several parameters for a given static-

msrgin condition.
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Derivation of lquations

.
On the basis of a first-order frequency solution to the linearized

time-dependent wave equation for supersonic flow, expressions for the
time-dependent perturbation velocity potential and the lifting pressure
(evaluated at time t = O) for a wing accelerating downward at a posi-
tive angle of attack &t may be written as follows (see ref. 17 and
eqs. (12) and (13) of ref. 16):

AP=L
[M2(f@q.1 JM2XZsP)=l --—

1
2P@GlB2

(1)

(2)

where @q=l - (N)q=l are the perturbation velocity potential (evalu-

ated on the upper surface) and the lifting pressurej respec.ively~ due
“ to unit (positive) steady pitching velocity about the y-exis ahd where

@=l and ~~)=1 me, analogously, the perturbation velocity potential

and the lifting pressure, respec.ively~ due to ~it (Positive) QIe of
attack.

Fkom the results of previous investigations (ref. 2 for ACp and

@ contributed by a and ref. 8 for ~ and @ contributed by q)

dealing with the plan form and speed rsnge considered herein, expressions
for the potentials and lifting pressures appesring on the right-hand
sides of equations (1) and (2) me reaiiily”obtained. Thus, in accordance
with equations (1) and (2) the velocity potential @ snd lifting pres-
sure N for the & motion my be tabulated; these results are pre-
sented in tables I and II. (For convenience, the pressures ti table ~
are given in coefficient form.)

Although the forces and moments may be obtained by appropriate
straightforward integrations of the formulas presented in tables I and II,
an alternate and less time-consuming approach has been utilized. Upon
elementsr~ integrations of equation (2), expressions for the lift and
pitching

“

moment may be conveniently written in derivative form as follows:
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8 b/2 ~ %1

JV
x— dxdy (4)

B2S~2 -b/2 Xm ‘v

All stability derivatives appeuing in equations (3) and (h) and
elsewhere in the text are measured in a system of principal body axes
with the center of gravity located at the wing apex. (See fig. 2(b)).
The formulas for @~lj (~)~lj and the vsriable x are expressed

with respect to the system of axes used in the analysis (fig. 2(a)).

Integration by parts of the middle temof equation (4), utiliza-
tion of the relationship

and combination of

%

like terms

(-M2C# w+

For convenience, equation (3)

yields the following

8
J

blp XqGl ME

~ -b/2 V x*

$[;:E*

(5)

expression for C&:

)

dY-

dx dy

may be expressed as follows:

where

(7)

(8)

.

y

.
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and

9“

In an analogous manner, equation (6)

where

and

L1—dxdy (9)
v

may be expressed as follows:

c%=~(?d,+($++(%)2 (lo)

( 11)

(12)

Equations and charts for the stability derivatives C&,
CW

%
sre presented in reference 8 for the wing plan form and Mach

number range considered in the present paper. Thus, only the expressions
for (C~)2 (eq~ (9))Y (%)2 (%” (12) ), and the integral term of

(%), (eq. (11)) require derivation. The results given in reference 2

for the velocity potential due to angle of attack were utilized in
csrrying out the required integrations. Appropriate combination of com-
ponents, in accordance with equations (7) and (10) j till then yield CIOSed-
form formulas for the derivatives C% and ~. Computations based on

these closed-form analytical expressions have been csrried out utilizing,
to a great extent, automatic computi~ facilities. (The final formulas
themselves sre not reproduced herein because of their rather excessive
length. The numerical results are believed to be sufficiently detailed
to obviate the need for additional calculations.)

-
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#
RESmTS NtO DISCllSS~ON

.

The type of lifting pressure distribution and of span load distribu-
tion obtained over some typical wings for the motion considered is of
interest. Some illustrative examples of the chordwise and spanwise lifting
pressure distributions, calculated by use of table 11, me presented in
figures 3 and 4; results for the spanwise Ii@ing (expressed in terms of
the spanwise distribution of.circulation) were obtained from reference 14
and sre presented in figure 5;

The results of the detailed computations for C~ are presented in

figures 6 to 10 and those for C& in figures 11 to 15. The data are

shown for a range of taper ratio from O to l.O and for a range of the
aspect-ratio psrameter AB from 3 to 20 (curves for AB,= 2 we included
for the A = 1.0 cases). The range of leading-edge sweepback angle is

—

included in values of the psrsmeter cot-113n from 0° to 45°. For con-
venience,the relationship and correspondencebetween the parameters
cot-% and liknare shoirnin figuxe 16.

The dashed parts of the design curves .(figs.6 to 15) do not repre.
sent actual calculations,because these regions correspond to the condi-
tion where the Mach lines from the wing apex intersect the tips. However,
calculations were made for the sonic-leading-edgecondition (using ref. 12)
and the curves were extended by means of dashed lines to these calculated
end points. The dashed extensions should yield results that are in very
close agreement with the true linearized-theoryvalues for most cases.
This agreement-maybe verified for the derivative CL& by appropriate

integration (graphical)of the span-load CW”WS presented in reference 14. 4

For use in locating the desired design-chart data, an index to fig-
ures 6 to 17 is presented in tables 111 and..IV. The derivatives presented *.
in these figures are measured relative to a“system of principal body axes
with moments taken about a center-of-gravitylocation assumed to be at
the wing apex. For arbitrary center-of-gratity locations, the given
results may be directly applied

(%)●

arbitrary

()c~c.g. at
distance d
from wing apex

in the foQw& manner: - -

= ( dc. (13)
C.g. e.g. at

wing apex

()cm’ +d ()~%=
e.g. at ~ C.g. at

(14)

wing apex wing apex

where d is positive when the center of gravity is rearward of the wing
apex.
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It is sometimes convenient to express the distance d in terms of
the static margin, where static margti iS defined aE the dist~ce~
expressed in percent 5, between the center of gravity and the center of
pressure due to angle of attack (usually termed the aerodynamic center),
and is considered positive when the center of gravity is forwsrd of the
aerodynamic center. Thus, the parsmeter d may be replacedby the equation

d = Distmce between wing apex snd aerodynamic center - Static msrgin

or
-C%E

= — - Static margin
‘%

(15)

(Rsign chsrts for the derivatives C& =d ~ for the PM form and

Mach number range considered in the present paper sre presented in ref. 8.)

The results calculated herein sre also directly applicable to a
system of stability axes (fig. 2(c)), inasmuch as for small mgles of
attack there is little change h the derivative ~ and no change in

the derivative c%. The results for ~ may also be applied to plan

forms tith “reverse” geometry because, as shown in reference 13, the
total lift remains unchsnged when the flow is reversed. (The distribu-
tion of lift, of course, is not invariant with flow direction.)

Some illustrative variations of the stability derivatives with aspect
ratio, Mach number, leading-edge sweepback~ and tap ratio ~e presented
in figures 17 and 18. Figure 19 presents some variations of the total

*
pitching-moment derivative C% + ~ with the aforementioned psrsmeters;

the results sre applicable to S1OW1Y (ftist-order frequency) oscillating
. wings. The requi~ed data for ~ were obtained from reference 8.

CONCLUDING REMARKS

On the basis of”a solution to the linearized time-dependent wave
equation, the nondimensional lift derivative ~ and the correspondti

pitching-nmment derivative C& resulting from constsnt vertical acceler-

ation have been evaluated for a fauily of thin sweptback tapered wings
with stresmwise tips traveling at supersonic speeds. The analysis is
applicable, h general, at Mach nmnbers for which the ~g lea- and
trailing edges are both supersonic.

*

-
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.

Computational results are presented in the form of generalized
design curves which permit fairly rapid estimations of the stability
derivatives C .~ smd ~ for broad ranges of the parameters aspect

ratio, taper ratio, and leading-edge sweepbgck. For illustrative pur-:
poses, several chordwise pressure distributions, spanwise pressure dis-
tributions, span load distributions, and variations of the derivatives
with wing-geometry parameters and Mach number sre also shown.

Results presented herein for the & motion may be directly added
to those,alread.yavailable for the steady pitching motion to enable the
determination of the total lift snd pitchi@Qmoment derivatives generated
by ,aslowly (first-order frequency) oscillating wing. In order to illus-
trate this application, some variations of the pitching-moment derivative
with wing geometry and Mach number are presented.

.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., April 7, 1954.
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1

(a) 3ody axes used in analysis.

Y

(b) Principal body axes with

Figure 2.- Systems of

center of-gravity at wing

axes and associated data.

apex.
.

.
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Y

z
(c) Stability axes with center of gravity at wing apex.

(d) Stability and principal body axes with center of gravity located at
a distance d from wing apex.

Figure 2.- Concluded.
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